Shor's Algorithm

DK Lee, Derek Dang

Steps of Algorithm

1. Take in an input N.
2. Verify that $N!=p^{k}$, for some prime p, constant k.
3. Choose a random number a from $1<a<$ N. Verify that $\operatorname{gcd}(a, N)=1$.
4. If gcd = 1, use an algorithm to find the period r of the certain sequence.
5. If r is odd, or $a^{r / 2}=-1$ modN, pick another a.
6. Find the $\operatorname{gcd}\left(a^{r / 2}+-1, N\right)$.
7. Return factor.

How to find the period

- Classical:
- List out values of x from 0 to 100 (assuming we find a period before then).
-Use formula:

$$
f_{a, N}(x)=a^{x} \bmod N .
$$

- Look for repeating values. If there is a repeat, the x at that value is the period.

How to find the period

- Quantum
- Use the dagger of the QFT (or DFT) and multiply it to the superposition of all the measured values ($\left|\varphi_{3}\right\rangle$).
- Measure the resulting vector and get a value.
-Use the formula: value $=\lambda * 2^{m} / r$ and solve for r.

How to find the period

Let's get a sample of our efforts before our discovery.

