Shor's Algorithm

DK Lee, Derek Dang

Steps of Algorithm

- 1. Take in an input N.
- 2. Verify that $N != p^k$, for some prime p, constant k.
- 3. Choose a random number a from 1 < a <
 N. Verify that gcd(a, N) = 1.</pre>
- 4. If gcd = 1, use an algorithm to find the period r of the certain sequence.
- 5. If r is odd, or $a^{r/2} = -1 \mod N$, pick another a.
- 6. Find the $gcd(a^{r/2} + -1, N)$.
- 7. Return factor.

How to find the period

- Classical:
 - -List out values of x from 0 to 100 (assuming we find a period before then).
 - -Use formula:

$$f_{a,N}(x) = a^{x} mod N.$$

-Look for repeating values. If there is a repeat, the x at that value is the period.

How to find the period

- Quantum
 - -Use the dagger of the QFT (or DFT) and multiply it to the superposition of all the measured values ($|\phi_3\rangle$).
 - –Measure the resulting vector and get a value.
 - -Use the formula: value = $\lambda * 2^m/r$ and solve for r.

How to find the period

Let's get a sample of our efforts before our discovery.

m = 2* = 4(2) = 8 22223 head-p 1 2221232 ***** 12.56/4 struct elemen 128 2-3-3-3 3 28=216 shirt elent. 64 $(v')^{\circ}$ head-P Nr. 0 un t 0 temp > ele 0 10 521 elenent 64 femp top we 2:26 0 mos int iment 1 * Se Pre b (1) retun -

